LINKAGE OF THE FACTOR FOR BIFID WING. THE BIFID WING AND OTHER SEX-LINKED FACTORS IN DROSOPHILA.

ROBERT CHAMBERS, JR.

The experiments described in the following pages were made primarily in order to test whether crossing-over of factors has any subsequent effect on the linkage relations of the factors involved. For instance, if a red eyed fly with bifid wings is crossed to a white eyed fly with normal wings there will appear in F_2 the non-crossover classes, red bifid and white normal, and also some crossovers white bifid and red normal. These cross-overs (white bifid) were then used to determine whether the same linkage values would reappear in their grandchildren; in other words, whether a crossover in a particular place predisposes to more frequent crossing-over in the same place.

I wish to take this opportunity of acknowledging my indebtedness to Professor Morgan and to Mr. Bridges for their advice and suggestions.

The term "bifid" was given to a type of wing in which the second inner vein fails to reach the margin, often producing a bifid or forked wing.¹ The forked condition is variable. A constant feature, however, which the forked condition frequently accompanies, is a fusing of the wing veins at the base of the wing. Flies possessing this characteristic cannot fly.

The following abbreviations are used in the tables to denote the factors taken account of in the flies studied:

For eye color—R = red, V = vermilion, W = white;

For body color—Gr = Gray, Y = yellow;

For wing shape—L = long, Bf = bifid;

X = factor to which sex linked factors are linked;

o = gamete not possessing X-factor.

The factors R, V, Gr and Bf are in association with the X-factor which is duplex in the female and simplex in the male.

¹ Morgan, Science, Vol. 35, March 12, 1912.

For the sake of simplicity these factors will be considered in this paper as single units.

EXPERIMENT I.

A long-winged vermilion eyed female was mated with a bifid winged red eyed male. The results to be expected in the F^1 and F^2 generations are shown in Table I.

TABLE I.

TO ILLUSTRATE EXPERIMENT I.

\mathbf{P}^{1}	LVX - LVX = LVQ $P^{i} Eggs LVX$	$BfRX - 0 = BfR\sigma^{3}$ Sperm BfRX, 0
F^1	$\begin{split} LVX &- BfRX = LR Q \\ F_1 Eggs & \left\{ \begin{array}{l} (1) \ LVX, \ (2) \ BfRX, \\ (3) \ LRX, \ (4) \ BfVX, \end{array} \right. \end{split}$	$LVX - o = LVo^{2}$ Sperm $\begin{cases} LVX, o \end{cases}$
F2		$LVX - 0 = LV\sigma^{2}$ BfRX - 0 = BfR\sigma^{2} LRX - 0 = LR\sigma^{2} BfVX - 0 = BfV\sigma^{2}

The F^1 generation consisted of LR females and LV males. The actual results of the F^2 generation are shown in Table II.

TABLE II.

RESULTS OF EXPERIMENT I.

F.5		ç			ੱ	ļ į	Total or or	Per Cent. of Crossovers.
	LR	LV	BfR	LV	BfV	LR	1	
	273	256	123	1.4.4	50	62	379	30

All the combinations expected are realized. Owing, however, to the coupling in pairs of the P¹ factors, the numbers of males in the two classes consisting of the combinations LR and BfV are fewer than those of the other two classes. That they appear at all is evidence of the incompleteness of the linkage, the new combinations being due to a rearrangement or crossing over of factors within the germ cells of the F¹ flies. The strength of linkage may be determined by that percentage of the total which are crossovers, in this case 112/379 or approximately 30 per cent.

On mating the F² males possessing the new combination BfV

with normal red eyed long winged flies (LR) we obtain LR male and female offspring. When these are interbred we obtain the F^2 results shown in Table III.

	TABLE III.
RESULTS OF	EXPERIMENT I., CROSSOVER.

\mathbf{F}^2	ç			Total ♂♂	Per Cent. of Crossovers.		
	LR	BfV	LR	LV	BfR		
	498	80	123	71	53	327	38

These results even with comparatively small numbers show that the new combination BfV produced by a crossing over of factors possesses approximately the same strength of coupling as did the original.

EXPERIMENT II.

In the reciprocal cross, BfR females with LV males, the offspring consist of LR females and BfR males. In the second generation the four classes of males occur in the same proportionate numbers as those in Experiment I.

The results to be expected are shown in Table IV.

TABLE IV.

	TO ILLUSTRATE EXPE	RIMENT II.
\mathbf{P}^{1}	$BfRX - BfRX = BfR Q$ $P^{1} Eggs BfRX$	$LVX - 0 = LV\sigma^2$ Sperm LVX, 0
\mathbf{F}^1	BfRX - LVX = LR Q	$BfRX - 0 = BfR\sigma$
	$F_1 \ Eggs \begin{cases} (1) \ BfRX, \ (2) \ LVX, \\ (3) \ BfVX, \ (4) \ LRX, \end{cases}$	Sperm $\left\{ \begin{array}{c} BfRX, o \end{array} \right.$
F ²	$ \begin{array}{l} BfRX - BfRX \\ BfVX - BfRX \\ LVX - BfRX \\ LRX - BfRX \\ \end{array} = LR \varphi $	$\begin{array}{l} \mathrm{BfRX} & -\mathrm{o} &= \mathrm{BfR}\mathrm{o}^{?}\\ \mathrm{LVX} & -\mathrm{o} &= \mathrm{LV}\mathrm{o}^{?}\\ \mathrm{BfVX} & -\mathrm{o} &= \mathrm{BfV}\mathrm{o}^{?}\\ \mathrm{LRX} & -\mathrm{o} &= \mathrm{LR}\mathrm{o}^{?} \end{array}$

The actual results of the experiment are shown in Table V.

				Re		OF EXPER	iment II.		
2	F ²	ç	2			ð		Total J J.	Per Cent. of Crossovers,
		LR	BfR	LV	BfR	LR	BfV	1	
		103	108	57	85	31	33	206	31

EXPERIMENT III.

Experiment III. confirms the results of Experiment I. LV females were crossed with BfR males. The F¹ females, all of which possess the gametic constitution, LVX-BfRX, (see Table I.), instead of being allowed to breed with their F¹ brothers, were mated with normal wild males possessing the gametic constitution RLX-o. The results are shown in Table VI. Although the cultures show a rather wide range of fluctuation it is doubtful if any of these are significantly different from 32, which is the value given by the total.

			-	.501	=		PERIMEN					
					LV♀	\times	BfR♂					
F1				I	R♀♀	and	1 LV d	31				
				LF	Q of F	1 ×	pure L	Rc	7			
\mathbf{F}^2			ç					37				
Bottle No.	Trans- fer.		LR		LV		BfR		LR		BfV	Per Cent. o Crossovers.
I	a	185		70		44		18		13		
	b	120		37		33		18		15		
	С	72		I 2		24		8		I2		
			377		119		101		-1-1		40	28
2	а	133		40		39		20		10		
	b	93		34		26	,	18		ΙI		
			226		74		64		38		27	32
3	a	150		50		50		22		18		
	b	97		33	83	31	81	14	36	13	2.7	20
	а	156	247	50	03	39	01	19	30	17	31	29
4	b	105		32		39		22		13		
		103	261	54	82		69		41		30	32
5	а	118		26		26	-)	19	4-	13	0	Ŭ
5	b	94		21		21		15		16		
			212		47		47		34		29	40
6			155		71		27		16		15	24
7 8			181		58		42		2 I		22	30
			199		51		58		30		28	35
9	-		II2		2 I		16		15		9	39
Totals			1970		606		485		275		231	32

TABLE VI.

EXPERIMENT IV.

LY females were mated with BfGr males. The F¹ generation consisted of LGr females and LY males. Interbreeding these gave rise to the four possible classes of males as shown in Table VII.

TABLE VII.

TO ILLUSTRATE EXPERIMENT IV.

\mathbf{P}^1	LYX - LYX = LYQ	BfGrX − o = BfGr♂				
	Gametes LYX	BfGrX, o				
F^1	LYX - BfGrX = LGr Q	$LYX - 0 = LY \vec{\sigma}$				
	$F_{1} Eggs \begin{cases} (1) LVX, (2) BfGrX, \\ (3) LGrX, (4) BfYX \end{cases}$	$X $ Sperm $\begin{cases} LYX, o \\ \\ \end{cases}$				
F²	$ \left. \begin{array}{c} LYX - LYX \\ BfYX - LYX \end{array} \right\} \doteq LY \bigcirc $	$LYX - 0 = LY\sigma^{2}$ BfGrX - 0 = BfGr\sigma^{2}				
	$\frac{LGrX - LYX}{BrGrX - LYX} = LGr \ \varphi$	$LGrX - o = LGr\sigma^{2}$ BfYX - o = BfY\sigma^{2}				

The actual results of the experiment are shown in Table VIII.

TABLE VIII.

RESULTS OF EXPERIMENT IV.

$\mathbf{P}^{\mathbf{I}}$												
F^1 $LGr \ Q \times LY \ O^7$												
F^2	ç	Ç		d.								
Bottle No.	LGr	LY	BfGr	LY	BfY	LGr	Per Cent, of Crossovers.					
I	69	29	46	41	0	7						
2	53	- 43	34	23	I	I						
3	70	- 59	57	46	5	I						
4	93	71	77	76	2	4						
Totals	285	202	214	186	8	13	5					

Table VIII. shows that the linkage of the factors for bifid and yellow is stronger than for bifid and vermilion studied in Experiment I., the per cent. of crossovers being 5.

On mating males of the crossover class BfY with pure LR females we find in the F² generation (Table IX.) that the new combination persists in the same percentage as did the original combinations depicted in Table VIII. These results are in harmony with those obtained in Experiment I.

TABLE IX.

RESULTS OF EXPERIMENT IV. THE RECIPROCAL CROSS.

P1	$BfGr \mathfrak{P} \times LV \sigma^{7}$											
F1		L	$R \ \varphi \times LR \ \phi$	57								
F2	ę		Per Cent.									
Bottle No.	LGr	LGr	BfY	LY	BfGr	of Crossovers.						
5	126	67	53	3	5							
6	237	IIO	- 99	7	3							
7	102	50	37	2	I							
8	174	60	59	2	2							
Total	649	287	248	14	II	4.5						

EXPERIMENT V.

This experiment is a repetition, during the following summer, of Experiment IV. The results of both reciprocal crosses are given in Tables X. and XI.

In order to secure large numbers the parent flies were transferred to fresh bottles every ten days. The transfers are indicated in the second column.

TABLE X.

RESULTS OF EXPERIMENT V. REPETITION OF EXPERIMENT IV. (Cf. TABLE VIII.)

F	2		Ç.				ď				Per
Bottle No.	Trans- fer.	LGr	LY	В	fGr	1	LY _	Bf	Y	LGr	Cent. of Cross- overs.
I	a	27	26	35		20		4		3	
	b	96	84	82		81		I		I	
		123	11	0	117		101		5	4	
2	a	54	51	48		42		4		I	
	b	45	31	33		26		4		3	
	с	61	49	45		36		I		4	
		160	13	I	126		104		9	8	
3	a	113	113	93		79		10		4	
	b	167	150	149		114		8		7	
		280	26	3	242		193		18	ΙI	
4	а	19	32	18		16		I		I	
	b	78	66	75		73		7		4	
	С	232	69	198		64		6		9	
	d	97	I 2	77		ΙI				7	
_		426	17	9	368		164		14	2 I	
Totals		989	68	3	853		562		46	44	6

The results of the reciprocal cross are shown in Table XI.

T	۰.	-		-	1	7	T .
- 1	\mathbf{A}	В	L	E.	7	١.	1.

RESULTS OF EXPERIMENT V. THE RECIPROCAL CROSS. (Cf. TABLE IX.)

F ²	ę				5							Per		
Bottle No.	Trans- fer.	LGr		BfGr		LY		BfGr		LGr		BfY		Cent. of Cross- overs.
5	a	33		38		2.1		30		2		3		
	b	88		51		77		73		6		5		
	С	59		40		36		33		I		0		
	d	55		37		43		46		5		5		
			235		166		180		182		14		13	
6			194		146		III		1.48		16		5	
7			75		39		50		53		0		4	
8			I 2 I		114		78		82		4		4	
9			104		96		40		69		-1		4	
Total			729		561		459		534		38		30	6

The percentage of crossovers is the same as that shown in Table X. and slightly larger than that in the corresponding experiment in Table IX.

EXPERIMENT VI.

LW females were mated with BfR males.

The LR females and LW males of the F^1 generation were allowed to interbreed. Table XII gives the numbers produced in the resulting F^2 generation. The percentage of crossovers is approximately 8.

7						
	1	DI	1.2	· · ·	- 8	
- 1	- 1	DI	LE	1	. 1	

RESULTS OF EXPERIMENT VI.

			LW	V♀ × BfR	ੋ		
F ¹			LF	R Q × LWa	57		
F.2		ç		c	37		Per Cent. of
Bottle No.	LR	LW	LW	BfR	LR	Bf W	Crossovers,
I	218	182	194	181	16	I 2	7
2	94	85	100	103	15	15	13
3	II5	86	69	77	2	5	5
Total	427	353	363	361	33	32	8

The strength of coupling of the new combinations in the crossovers was determined by mating the crossover BfW males with pure LR σ . Table XIII. gives the results of this mating.

ROBERT CHAMBERS, JR.

		LI	$R \circ \times BfW$	3			
F^2		L	$R \ \varphi \times LR$	57			
F^2	²² Q d ⁷						
Bottle No.	LR	LR	BfW	LW	BfR	Crossovers,	
I	329	144	III	II	I 2	7	
2	394	166	145	15	15	9	
3	193	96	64	5	7	7	
4	438	173	147	21	18	II	
5	152	74	51	7	8	II	
6	301	106	58	6	6	7	
Fotal	1807	759	576	65	66	9	

		TABLE XIII.	
RESULTS	OF	EXPERIMENT VI.~	CROSSOVERS.

The crossing back of the crossovers occurs in approximately the same percentage as did the crossovers to the original combinations in Experiment VII.

The results here harmonize with those of Experiment I. We may legitimately infer that the large classes in the F^2 generation are those with the combinations occurring in the grandparents no matter whether the grandparents have acquired those factors early or late in their phylogenesis.

EXPERIMENT VII.

The results of the reciprocal cross, BfR females by LW males is shown in Table XIV.

 		7.1	¥ 7
ABL	E I		\mathcal{M}

RESULTS OF EXPERIMENT VII. RECIPROCAL OF EXPERIMENT VI.

				BfR	$2 \times LW\sigma$				
F ¹				LR Q	\times BfR σ				
F2		ę				Per			
Bottle No.	Trans- fer.	LR		BfR	LW	BfR	LR	BfW	Cent. of Cross- overs.
I	а	161	99		108	105	6	7	
	b	135	77		100	87	4	6	
	С	18	10		17	14	0	I	
		31.4		186	225	206	-		6
2		76		54	85	65			4
3		117		91	86	83			6
4		166		136		146			3 2
5		157		119	113	129			
6		174		142		120		3	3 3 6
7		III		80	81	83		0	3
8		I20		75	64	94			6
9		143		117	107	107		4	4
Total		1378		1000	100.4	1033	45	44	4

The number of crossovers is far too small to give the same ratio found in Experiment VI. Here the percentage is only 4.

EXPERIMENT VIII.

This is a modification of Experiment VI. LR females were mated with BfW males. The F¹ generation consisted of LR males and females. The LR \Im were removed from their brothers and crossed with pure BfW males. This was done in order to secure four possible classes, in the F² generation, not only of males but also of females thus rendering the female counts also available for study.

Table XV. shows the gametic constitution of the flies used and the combinations expected in the F^1 and F^2 generations.

TABLE XV.

TO ILLUSTRATE EXPERIMENT VIII.

\mathbb{P}^1	LRX - LRX = LRQ	$BfWX - o = BfR \sigma^2$
	Gametes LRX	BfWX, o
\mathbf{F}^{1}	LRX - BfWX = LRQ	$LRX - 0 = LR\sigma^{7}$
	$LR \ Q$ of $F^1 \times BfW \circ^2$	
	$F_1 Eggs \begin{cases} (1) LRX, (2) BfWX, \\ (3) LWX, (4) BfRX \end{cases}$	Same ∫ BfWX. 0
	F_1 Eggs (3) LWX, (4) BfRX	Sperm 2
F^2	LRX - BfWX = LR Q	$LRX - 0 = LR\sigma^{7}$
	BfWX - BfWX = BfWQ	$BfWX - 0 = BfWo^{r}$
	LWX - BfWX = LWQ	$LWX - 0 = LWO^{7}$
	$BfRX - BfWX = BfR \varphi$	$BfRX - 0 = BfR \sigma^{\gamma}$

In Table XVI. are given the actual results of the experiment. Judging from the total numbers of the F^2 flies the break in the coupling occurs in the ratio of 5 per cent. in both females and males. Only the normal range of variations from this are apparent when the numbers from individual bottles are considered.¹

¹ In the previous experiments 4–6 females were placed with as many males in the same bottle. For Experiments VIII, and IX, one female with 2–3 males was placed in a bottle. She and the males were transferred every 6–8 days. Some of the females lasted for six weeks by which time they were fairly exhausted of eggs.

TABLE XVI.

RESULTS OF EXPERIMENT VIII.

$LR \ > \times BfW$

\mathbf{F}^{1}

LR

		LR 9 of	$F^1 imes BfW_C$	7 (fro	m stock	bottle).			
F ²		ę		it. of ers.		്			t. of ers.
Bottle No. Trans- fer,	LR	BfW	LW BfR	Per Cent. of Crossovers.	LR	BfW	LW	BfR	Per Cent. of Crossovers,
I a b c d e f 2 a b c	45 39 83 63 15 2 247 40 45 66	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6 6	36 56 66 17 17 237 35 50 67	35 26 92 76 13 0 242 34 44 75	2	I 4 5 4 I 0 I 5 2 3 3 3	6
d e 3 a b c d e	51 33 235 52 20 34 29 10 145	46 5 39 2 33 2 35 4 24 3 28 4 22 2 11 3 120		9 5	48 32 29 29 44 23 8 133	39 34 226 47 23 25 29 12 136	3 4 12 4 1 0 0 2 7	2 2 1 1 3 1 1 1 7	5
4 a b c d e 5 a b c d	88 105 54 28 23 298 57 38 24 19	90 6 101 8 38 0 37 7 12 1 278 70 4 33 4 33 1 18 1	4 2 3 1 22 1 4 1 0 0	3 6	94 90 59 32 17 292 59 38 23 14	102 122 49 33 14 320 71 41 24 14	IO 4 3 2 2 2 1 I 0 0 1	I 5 3 3 I 1 3 2 2 2 2	5
6 7 8 9 10 11 12 13 14 15 16	138 103 38 120 209 88 63 162 162 156 139 181	93 190 66 60 143 141	10 7 8 5 5 5 8 8 10 5 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	134 97 56 90 185 61 95 149 170 196 97 171	150 79 45 125 169 79 77 129 159 157 111 154	2 6 2 6 13 7 5 9 7 12 6 8	9 4 3 4 14 3 7 11 8 7 4 9	4 5 5 4 7 7 7 7 4 5 5 5
Total	2322	2053	141 8	9 5	2246	2229	130	119	5

EXPERIMENT IX.

For this experiment both males and females with crossed over factors were used. These were taken from the F^2 generation produced in Experiment VIII. On looking over Table XV. it will be noticed that the F^2 BfR females possess the gametic constitution of BfRX–BfWX. Both of the combinations BfR and BfW have been produced in the normal percentage by a crossing over in the F^1 generation of factors originally coupled in the grandparents.

The F^2 LW males have been similarly produced, their factors L and W being crossovers.

All combinations, therefore, introduced into the F^1 generation have been produced by a rearrangement of the original combinations owing to crossing over.

Table XVII. shows the expected results of such a crossing.

TABLE XVII.

	TO ILLUSTRATE EXPERIMENT	X. (Crossovers.)
Ρı	BfRX − BfWX = BfR ♀ Gametes BfRX, BfWX	$LWX - 0 = LW\vec{O}$ LWX, 0
F ¹	$BfRX - LWX = LR Q$ $BfWX - LWX = LW Q$ $LR of F^{1} \times BfW$	$B(RX - o) = B(R)^{3}$ $B(WX - o) = B(W)^{3}$ $V o(F^{1})$
	$F_{1} Eggs \begin{cases} (1) BfRX, (2) LWX \\ (3) BfWX, (4) LRX \end{cases}$	' Sperm $\left\{ { m BfWX, o} \right.$
F ²	$\begin{array}{l} BfRX \ - \ BfWX \ = \ BfR \ \varphi \\ LWX \ - \ BfWX \ = \ LW \ \varphi \\ BfWX \ - \ BfWX \ = \ BfW \ \varphi \\ LRX \ - \ BfWX \ = \ LR \ \varphi \end{array}$	$BfRX - o = BfR \sigma^{7}$ $LWX - o = LW\sigma^{7}$ $BfWX - o = BfW\sigma^{7}$ $LRX - o = LR\sigma^{7}$

In spite of the conditions of the experiment the combinations introduced into the F^1 generation persist with a strength of linkage approximately equal to that existing among the original combinations.

Table XVIII. gives the actual results of the experiment.

TABLE XVIII.

				R	LESULTS	OF EN	PER	IMENT	X.			
		В	fR♀	\times LW	♂ (Bot	h cross	over	s from F	⁷² of Tabl	e 16).		
\mathbf{F}^{1}				LR	and LV	V♀♀,	BfR	and Bf	Word			
				LR Q (of $F^1 \times$	BfW♂	(fre	m stock	; bottle)			
H	-2			ç	?					7		
Bottle No.	Trans- fer.	BfR		LW	BfW	LR		BfR	LW	Bf W	LR	
17	a b c d e	89 46 33 39 28	6: 39 31 40 21	9 1 6	I I 0 2 0	3 0 2 3 5		78 41 26 33 23	64 46 32 32 29	5 0 3 2 4	2 I 3 I 3	
18	f a b c d e	2 32 56 21 31 27	37 31 4 22 29 3	1 2 9	0 3 3 3 2 0	0 13 2 0 3 3 3	3	2 203 38 56 21 32 38	4 207 30 48 15 24 28	5	0 0 2 0 4 2	6
19	f a b c d	6 1 49 30 28 37	73 5' 30 23 43	5 165 7 0 3 3	I 2 2 2 0	0 5 3 4	6	4 189 67 26 22 38	5 150 62 29 18 32	0 18 3 2 3 5	0 8 1 2 1 1	7
	e f		65	1 168	3 0 9		7	15 4 172	22 4 167	0 14	3 0 8	7
20	a b c d e	65 42 34 54 4	6 3 40 3	1 6 1	0 I 2 6 0	5 1 1 1		63 27 38 48 9	59 47 40 29 3	8 5 1 3 0	I 2 I I I	
21	a b c d e	19 31 52 65 19	99 3 3 4 5 1	7 8 3	9 1 2. 4 3 0	9 2 1 2 1	5	185 37 37 36 60 22	178 39 51 38 53 7	4 2 4	6 2 2 5 0	6
22 23		I	86 59 42	189 134 115	10 5 4	8 6 2	4 2	192 185 135	188 135 106	14 9 4	9 6 5	6 4 4
24 25 26 27 28 29 30			16 62 44 64 92 97 48	13 35 31 56 89 92 52	0 4 2 3 1 4 3	0 1 2 2 8 6 0	5 5 4 5	10 50 30 64 80 100 55	9 37 36 52 89 70 62	0 1 0 3 5 2	0 5 5 6 10 1	1 6 4 5 8 3
$\frac{31}{\text{Tot}}$	al	17	98 82	104 1625	4	8 91	6	99 1749	85	6	13 92	9

On examining the numbers from the individual bottles only the normal fluctuation in the strength of linkage is noticeable.

SUMMARY.

The strength of linkage between the factor for bifid wing and the factor for vermilion eye is approximately the same (viz. 32 units) in the original cross in its reciprocal, and in the F_2 from the crossovers of the original. (See Experiments I., II. and III., Tables II., III., V. and VI.)

The strength of linkage between yellow body color and bifd wing is constant (viz. 5 units) in the original and in the F_2 from the crossovers (See Experiment IV., Tables VII., VIII. and IX.).

A repetition of Experiment IV. showed a linkage value (viz. 6 units) not significantly different from that previously found. The linkage moreover is constant in the two reciprocal crosses of this experiment. (See Experiment V.; Tables X. and XI.)

The strength of linkage between white eyes and bifd wings is preserved in the crossovers (viz. original 8, crossover 9 units), but is different in the reciprocal (viz., 4). (See Experiments VI. and VII.; Tables XII., XIII. and XIV).

A modification of experiments VI. and VII. gave a strength of linkage (viz. 5 and 6), which approaches that of the reciprocal (viz., 4) but not the original linkage value (viz., 8). (See Experiments VIII. and IX.; Tables XVI. and XVIII.)

In all of the experiments of this paper the strength of linkage is apparently not changed by a previous crossing over between the factors in question.

The linkage value given by the females is the same as that given by the males of the same experiment. (See Tables XVI. and XVIII.)

Crossovers appear in the F_2 generation equally frequently among the first flies hatched as among those hatched last. That the factor for yellow body color has an effect on the viability of flies is evidenced from the deficient numbers of yellow flies in Tables VIII., X. and XI. A deficiency also occurs in flies with white eyes as compared with those possessing red eyes. (See Tables XIII., XVI. and XVIII.) A bifid wing factor, however, does not seem to have any such effect; the bifid winged flies comparing favorably with the long winged flies (see Table XVIII.).

UNIVERSITY OF CINCINNATI, May 6, 1914.